Asthma, allergies and COVID-19: a review of what we know
DOI:
https://doi.org/10.56294/shp2026384Keywords:
COVID-19, SARS-CoV-2, allergies, asthma, infectionAbstract
Introduction: Allergies are exaggerated reactions of the immune system to normally harmless substances, while asthma is a chronic disease that inflames the airways. Although people with asthma may be more susceptible to respiratory infections, the relationship between COVID-19 and asthma and allergies is contradictory and a matter of debate.
Objective: To summarize the theoretical background on the relationship between allergic diseases, such as asthma, and COVID-19.
Development: There is no conclusive evidence on the relationship between asthma, especially the allergic phenotype, and COVID-19. However, several aspects of immunopathogenesis may influence this interaction. The type I interferon response in asthmatics does not seem defective, and ACE2 underexpression could slow down the infection, allowing an adequate antiviral response. Eosinophils, which protect against viral infections, could compensate for the eosinopenia observed in COVID-19. The elevated presence of Th2 cells in asthmatics could also offer protection against severe forms of the disease. Despite this, asthma can predispose to severe symptoms due to inflammation and changes in the respiratory microbiota.
Conclusions: The relationship between asthma, allergies and COVID-19 is complex and subject to debate, influenced by multiple factors. Additional studies are needed to better understand these interactions and the genetic and environmental factors that may affect the prevalence and response to these diseases.
References
1. Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021;19:141-54. https://doi.org/10.1038/s41579-020-00459-7.
2. Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Sig Transduct Target Ther 2020;5:128. https://doi.org/10.1038/s41392-020-00243-2.
3. Prakash S, Singh Jalal A, Pathak P. Forecasting COVID-19 Pandemic – A scientometric Review of Methodologies Based on Mathematics, Statistics, and Machine Learning. Data and Metadata 2024;3. https://doi.org/10.56294/dm2024.404.
4. Diamond MS, Kanneganti T-D. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 2022;23:165-76. https://doi.org/10.1038/s41590-021-01091-0.
5. Feng Z, Diao B, Wang R, Wang G, Wang C, Tan Y, et al. The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes 2020. https://doi.org/10.1101/2020.03.27.20045427.
6. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020;324:782. https://doi.org/10.1001/jama.2020.12839.
7. De Paula Paredes A, Travieso Ramos N, Herrera Miranda GL. Implementation of an improvement strategy on the imaging spectrum of patients with COVID-19 for Imaging specialists. Seminars in Medical Writing and Education 2024;3:618. https://doi.org/10.56294/mw2024618.
8. Sapir T, Averch Z, Lerman B, Bodzin A, Fishman Y, Maitra R. COVID-19 and the Immune Response: A Multi-Phasic Approach to the Treatment of COVID-19. IJMS 2022;23:8606. https://doi.org/10.3390/ijms23158606.
9. Teuwen L-A, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol 2020;20:389-91. https://doi.org/10.1038/s41577-020-0343-0.
10. Ortega-Martinez RA, Molina-Cardenas MA, Román-Calvimontes CE. Evaluation of the usefulness of a predictive model for the diagnosis of COVID-19 in relation to the TR-PCR test and rapid test, in patients at the Univalle Sud Hospital. Seminars in Medical Writing and Education 2024;3:614. https://doi.org/10.56294/mw2024614.
11. Azkur AK, Akdis M, Azkur D, Sokolowska M, Van De Veen W, Brüggen M, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy 2020;75:1564-81. https://doi.org/10.1111/all.14364.
12. Xu G, Qi F, Li H, Yang Q, Wang H, Wang X, et al. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell Discov 2020;6:73. https://doi.org/10.1038/s41421-020-00225-2.
13. Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, et al. Immune response in COVID-19: what is next? Cell Death & Differentiation 2022;29:1107-22.
14. Barreras Sixto D, Orraca Castillo O, Valdés Lanza L, Miló Valdés CA, Lugo Hernández A, Martínez Carmona Y. Aspectos clínicos-epidemiológicos de la COVID-19 en pacientes de Pinar del Río. Rev Ciencias Médicas 2022;26:e5486.
15. Aguilar-Janto LE, Quiroz-Valenzuela RJ, Mendoza-Barrientos LC. Prioritized sectors in the initial government response to face COVID-19. A systematic review. Salud, Ciencia y Tecnología - Serie de Conferencias 2024;3. https://doi.org/10.56294/sctconf2024.1144.
16. Ashraf UM, Abokor AA, Edwards JM, Waigi EW, Royfman RS, Hasan SA-M, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics 2021;53:51-60. https://doi.org/10.1152/physiolgenomics.00087.2020.
17. Van Der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Cell Reports 2022;40:111148. https://doi.org/10.1016/j.celrep.2022.111148.
18. Sonja J N, Ututalum CS, S P, Makhija H, Srishti P, Prakasam P. Epidemiological study on Covid-19 frequency, severity, and territorial spreading. Salud, Ciencia y Tecnología 2024;4. https://doi.org/10.56294/saludcyt2024.918.
19. Boumaza A, Gay L, Mezouar S, Bestion E, Diallo AB, Michel M, et al. Monocytes and Macrophages, Targets of Severe Acute Respiratory Syndrome Coronavirus 2: The Clue for Coronavirus Disease 2019 Immunoparalysis. The Journal of Infectious Diseases 2021;224:395-406. https://doi.org/10.1093/infdis/jiab044.
20. Luo X, Zhu Y, Mao J, Du R. T cell immunobiology and cytokine storm of COVID‐19. Scand J Immunol 2021;93:e12989. https://doi.org/10.1111/sji.12989.
21. Gagliardi MC, Tieri P, Ortona E, Ruggieri A. ACE2 expression and sex disparity in COVID-19. Cell Death Discov 2020;6:37. https://doi.org/10.1038/s41420-020-0276-1.
22. Ghosh A, Girish V, Yuan ML, Coakley RD, Alexis NE, Sausville EL, et al. Combustible and electronic cigarette exposures increase ACE2 activity and SARS-CoV-2 Spike binding. American Journal of Respiratory and Critical Care Medicine 2022;205. https://doi.org/10.1101/2021.06.04.447156.
23. Guapisaca Gaona JS, Guartambel Cajamarca EB, Muñoz Palomeque DG, Angamarca Coello MF. Risk factors associated with the development of pulmonary thromboembolism in adult patients diagnosed with COVID-19. Salud, Ciencia y Tecnología 2022;2:212. https://doi.org/10.56294/saludcyt2022212.
24. Ghosh S, Das S, Mondal R, Abdullah S, Sultana S, Singh S, et al. A review on the effect of COVID-19 in type 2 asthma and its management. International Immunopharmacology 2021;91:107309. https://doi.org/10.1016/j.intimp.2020.107309.
25. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell 2021;184:1469-85. https://doi.org/10.1016/j.cell.2021.02.016.
26. Jutel M, Agache I, Zemelka‐Wiacek M, Akdis M, Chivato T, Del Giacco S, et al. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023;78:2851-74. https://doi.org/10.1111/all.15889.
27. Liu S, Zhi Y, Ying S. COVID-19 and Asthma: Reflection During the Pandemic. Clinic Rev Allerg Immunol 2020;59:78-88. https://doi.org/10.1007/s12016-020-08797-3.
28. Mocanu M, Vâță D, Alexa A-I, Trandafir L, Patrașcu A-I, Hâncu MF, et al. Atopic Dermatitis—Beyond the Skin. Diagnostics 2021;11:1553. https://doi.org/10.3390/diagnostics11091553.
29. Tsuge M, Ikeda M, Matsumoto N, Yorifuji T, Tsukahara H. Current Insights into Atopic March. Children 2021;8:1067. https://doi.org/10.3390/children8111067.
30. Yang L, Fu J, Zhou Y. Research Progress in Atopic March. Front Immunol 2020;11:1907. https://doi.org/10.3389/fimmu.2020.01907.
31. Custovic A, Custovic D, Kljaić Bukvić B, Fontanella S, Haider S. Atopic phenotypes and their implication in the atopic march. Expert Review of Clinical Immunology 2020;16:873-81. https://doi.org/10.1080/1744666X.2020.1816825.
32. Licari A, Votto M, Brambilla I, Castagnoli R, Piccotti E, Olcese R, et al. Allergy and asthma in children and adolescents during the COVID outbreak: What we know and how we could prevent allergy and asthma flares. Allergy 2020;75:2402-5. https://doi.org/10.1111/all.14369.
33. Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Seminars in Immunology 2019;46:101333. https://doi.org/10.1016/j.smim.2019.101333.
34. Jackson DJ, Gern JE. Rhinovirus Infections and Their Roles in Asthma: Etiology and Exacerbations. The Journal of Allergy and Clinical Immunology: In Practice 2022;10:673-81. https://doi.org/10.1016/j.jaip.2022.01.006.
35. Maggi E, Canonica GW, Moretta L. COVID-19: Unanswered questions on immune response and pathogenesis. Journal of Allergy and Clinical Immunology 2020;146:18-22. https://doi.org/10.1016/j.jaci.2020.05.001.
36. Wang H, Song J, Yao Y, Deng Y, Wang Z, Liao B, et al. Angiotensin‐converting enzyme II expression and its implication in the association between COVID‐19 and allergic rhinitis. Allergy 2021;76:906-10. https://doi.org/10.1111/all.14569.
37. Kimura H, Francisco D, Conway M, Martinez FD, Vercelli D, Polverino F, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. Journal of Allergy and Clinical Immunology 2020;146:80-88.e8. https://doi.org/10.1016/j.jaci.2020.05.004.
38. Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front Immunol 2021;12:720109. https://doi.org/10.3389/fimmu.2021.720109.
39. Lee SC, Son KJ, Han CH, Jung JY, Park SC. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci Rep 2020;10:21805. https://doi.org/10.1038/s41598-020-77791-8.
40. Kanannejad Z, Alyasin S, Esmaeilzadeh H, Nabavizadeh H, Amin R. Asthma and COVID-19 pandemic: focus on the eosinophil count and ACE2 expression. Eur Ann Allergy Clin Immunol 2022;54:284. https://doi.org/10.23822/EurAnnACI.1764-1489.233.
41. Jackson DJ, Busse WW, Bacharier LB, Kattan M, O’Connor GT, Wood RA, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. Journal of Allergy and Clinical Immunology 2020;146:203-206.e3. https://doi.org/10.1016/j.jaci.2020.04.009.
42. Murphy TR, Busse W, Holweg CTJ, Rajput Y, Raimundo K, Meyer CS, et al. Patients with allergic asthma have lower risk of severe COVID-19 outcomes than patients with nonallergic asthma. BMC Pulm Med 2022;22:418. https://doi.org/10.1186/s12890-022-02230-5.
43. Choudhary S, Sharma K, Silakari O. The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microbial Pathogenesis 2021;150:104673. https://doi.org/10.1016/j.micpath.2020.104673.
44. Kim B-G, Lee H, Yeom SW, Jeong CY, Park DW, Park TS, et al. Increased Risk of New-Onset Asthma After COVID-19: A Nationwide Population-Based Cohort Study. The Journal of Allergy and Clinical Immunology: In Practice 2024;12:120-132.e5. https://doi.org/10.1016/j.jaip.2023.09.015.
45. Morais-Almeida M, Bousquet J. COVID-19 and asthma: To have or not to have T2 inflammation makes a difference? Pulmonology 2020;26:261-3. https://doi.org/10.1016/j.pulmoe.2020.05.003.
46. Yang Z, Mitländer H, Vuorinen T, Finotto S. Mechanism of Rhinovirus Immunity and Asthma. Front Immunol 2021;12:731846. https://doi.org/10.3389/fimmu.2021.731846.
47. Yang JM, Koh HY, Moon SY, Yoo IK, Ha EK, You S, et al. Allergic disorders and susceptibility to and severity of COVID-19: A nationwide cohort study. Journal of Allergy and Clinical Immunology 2020;146:790-8. https://doi.org/10.1016/j.jaci.2020.08.008.
48. Zhang J, Dong X, Liu G, Gao Y. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clinic Rev Allerg Immunol 2022;64:90-107. https://doi.org/10.1007/s12016-022-08921-5.
49. Ming W, Zuo J, Han J, Chen J. The impact of comorbid allergic airway disease on the severity and mortality of COVID-19: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2022;279:1675-90. https://doi.org/10.1007/s00405-021-07072-1.
50. Xu C, Zhao H, Song Y, Zhou J, Wu T, Qiu J, et al. The Association between Allergic Rhinitis and COVID-19: A Systematic Review and Meta-Analysis. International Journal of Clinical Practice s. f.
51. Raghavan S, Leo MD. Histamine Potentiates SARS-CoV-2 Spike Protein Entry Into Endothelial Cells. Front Pharmacol 2022;13:872736. https://doi.org/10.3389/fphar.2022.872736.
52. Konrat R, Papp H, Kimpel J, Rössler A, Szijártó V, Nagy G, et al. The Anti-Histamine Azelastine, Identified by Computational Drug Repurposing, Inhibits Infection by Major Variants of SARS-CoV-2 in Cell Cultures and Reconstituted Human Nasal Tissue. Front Pharmacol 2022;13:861295. https://doi.org/10.3389/fphar.2022.861295.
53. Luedemann M, Stadler D, Cheng C-C, Protzer U, Knolle PA, Donakonda S. Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing. Computational and Structural Biotechnology Journal 2022;20:799-811. https://doi.org/10.1016/j.csbj.2022.01.024.
54. Ortega H, Nickle D, Carter L. Rhinovirus and asthma: Challenges and opportunities. Reviews in Medical Virology 2021;31:e2193. https://doi.org/10.1002/rmv.2193.
55. Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, et al. Th2 and Th17‐associated immunopathology following SARS‐CoV‐2 breakthrough infection in Spike‐vaccinated ACE2‐humanized mice. Journal of Medical Virology 2024;96:e29408. https://doi.org/10.1002/jmv.29408.
56. Pathinayake PS, Awatade NT, Wark PAB. Type 2 Immunity and Its Impact on COVID-19 Infection in the Airways. Viruses 2023;15:402. https://doi.org/10.3390/v15020402.
57. Terahara K, Sato T, Adachi Y, Tonouchi K, Onodera T, Moriyama S, et al. SARS-CoV-2-specific CD4+ T cell longevity correlates with Th17-like phenotype. iScience 2022;25:104959. https://doi.org/10.1016/j.isci.2022.104959.
58. Wolff D, Drewitz KP, Ulrich A, Siegels D, Deckert S, Sprenger AA, et al. Allergic diseases as risk factors for Long‐COVID symptoms: Systematic review of prospective cohort studies. Clin Experimental Allergy 2023;53:1162-76. https://doi.org/10.1111/cea.14391.
59. Ren J, Pang W, Luo Y, Cheng D, Qiu K, Rao Y, et al. Impact of Allergic Rhinitis and Asthma on COVID-19 Infection, Hospitalization, and Mortality. The Journal of Allergy and Clinical Immunology: In Practice 2022;10:124-33. https://doi.org/10.1016/j.jaip.2021.10.049.
60. Assaf S, Stenberg H, Jesenak M, Tarasevych SP, Hanania NA, Diamant Z. Asthma in the era of COVID-19. Respiratory Medicine 2023;218:107373. https://doi.org/10.1016/j.rmed.2023.107373.
61. Feddema JJ, Claassen E. Prevalence of viral respiratory infections amongst asthmatics: Results of a meta-regression analysis. Respiratory Medicine 2020;173:106020. https://doi.org/10.1016/j.rmed.2020.106020.
62. Orraca Castillo O, Navarro Palmera E, Quintero Pérez W, Blanco Valdés TM, Rodríguez Machín LR. Frecuencia de infecciones respiratorias agudas en niños y adolescentes con asma de la provincia de Pinar del Río. MEDISAN 2018;22.
63. Mendes NF, Jara CP, Mansour E, Araújo EP, Velloso LA. Asthma and COVID-19: a systematic review. Allergy Asthma Clin Immunol 2021;17:5. https://doi.org/10.1186/s13223-020-00509-y.
64. Krzych-Fałta E, Wojas O, Furmańczyk K, Dziewa-Dawidczyk D, Piekarska B, Samoliński B, et al. Evaluation of selected aspects of the hygiene hypothesis and their effect on the incidence of allergy. Int J Occup Med Environ Health 2023;36:69-83. https://doi.org/10.13075/ijomeh.1896.01880.
65. Perkin MR, Strachan DP. The hygiene hypothesis for allergy – conception and evolution. Front Allergy 2022;3:1051368. https://doi.org/10.3389/falgy.2022.1051368.
66. Larsson SC, Gill D. Genetic predisposition to allergic diseases is inversely associated with risk of COVID‐19. Allergy 2021;76:1911-3. https://doi.org/10.1111/all.14728.
67. Miló Valdés CA, Lugo Hernández A, Pino Falcón A, García García M, Pérez Acevedo LC, Orraca Castillo O. Antecedentes personales y familiares de alergia y asma y riesgo en la infección por SARS-CoV-2. Rev Ciencias Médicas 2024;28:e6093.
68. Bullerdiek J, Reisinger E, Rommel B, Dotzauer A. ABO blood groups and the risk of SARS-CoV-2 infection. Protoplasma 2022;259:1381-95. https://doi.org/10.1007/s00709-022-01754-1.
69. Dahalan NH, Tuan Din SA, Mohamad SMB. Association of ABO blood groups with allergic diseases: a scoping review. BMJ Open 2020;10:e029559. https://doi.org/10.1136/bmjopen-2019-029559.
70. Sarmaik A, Verma RR, Sahoo S. Does Blood Group Type Predispose to Allergic Rhinitis? An Observational Study and Literature Review. European Journal of Rhinology and Allergy 2023;6:82-8. https://doi.org/10.5152/ejra.2023.23104.
71. Franchini M, Cruciani M, Mengoli C, Giuseppe Marano G x, Candura F, Lopez N, et al. ABO blood group and COVID-19: an updated systematic literature review and meta-analysis. Blood Transfusion 2021:317-26. https://doi.org/10.2450/2021.0049-21.
72. Gil-Manso S, Miguens Blanco I, Motyka B, Halpin A, López-Esteban R, Pérez-Fernández VA, et al. ABO blood group is involved in the quality of the specific immune response anti-SARS-CoV-2. Virulence 2022;13:30-45. https://doi.org/10.1080/21505594.2021.2019959.
73. Göker H, Aladağ-Karakulak E, Demi̇Roğlu H, Ayaz CM, Büyükaşik Y, İNkaya AC, et al. The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. Turk J Med Sci 2020;50:679-83. https://doi.org/10.3906/sag-2005-395.
74. Lal T, Sadhasivam M, K SPA, J AAS, R P, Khaleeluddin KB. An Observational Study to Analyse the Association of the ABO and Rh Blood Group Systems With Bronchial Asthma. Cureus 2023. https://doi.org/10.7759/cureus.37675.
75. Lampalo M, Jukić I, Bingulac-Popović J, Safić Stanić H, Ferara N, Popović-Grle S. ABO blood group genotypes and ventilatory dysfunction in patients with allergic and nonallergic asthma. Medicinski Glasnik Ljekarske Komore Zenicko-Dobojskog Kantona 2020. https://doi.org/10.17392/1099-20.
76. Gibellini L, De Biasi S, Meschiari M, Gozzi L, Paolini A, Borella R, et al. Plasma Cytokine Atlas Reveals the Importance of TH2 Polarization and Interferons in Predicting COVID-19 Severity and Survival. Front Immunol 2022;13:842150. https://doi.org/10.3389/fimmu.2022.842150.
77. Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol 2022;13:945063. https://doi.org/10.3389/fimmu.2022.945063.
Published
Issue
Section
License
Copyright (c) 2026 Carlos Alfredo Miló Valdés, Adrián Alejandro Vitón Castillo, Lidia Cecilia Pérez Acevedo (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.